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Code, generated Images,
and pre-trained models

are all available at
github.com/clovaal/\WCT?2

ShES
Search & Clova Al
Style transfer your image in “photographic way”, e.g., day2sunset. NAVER
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AEFY BH2H? Artistic

Gatys et al. CVPR ‘16
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Transfer
*Unsupervised Learning
*Representation Learning

eeature extraction

Style
Domalin Translation
*Domain Adaptation

*Domain Augmentation

Generative model
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Julesz Conjecture (IRE Information Theory, 1962)
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Béla Julesz

visual neuroscientist &

1.  The theory of Markov random fields

2. The use of oriented linear kernels (e.g., multi-scale wavelets) experimental psychologist
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- Gatys et a/, NIPS 2015

Texture Synthesis Using Convolutional Neural
Networks

Leon A, Gatys
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A bstract

Here we introduce a new model of natural textunes based on the feature spaces
of convolutional newral networks optimised for object ecognition. Samples from
the model are of high perceptual quality demonstrating the generative power of
ncural networks trained in a purely discriminative fashion. Within the model, tex-
tures are represented by the commelations between feature maps in several layers of
the network. We show that across layers the textume representations increasingly
capture the statistical properties of natural images while making object informa-
ton mone and momr: explicit. The mode] provides a new tool to generate stimuli
for neuroscience and might offer insights into the deep representations leamed by
convelutional neural networks,



Neural Style Algorithm

- Matching Gram matrix C
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Neural Style Algorithm

- Gatys et a/, NIPS 2015 noisez StleS
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Neural Style Algorithm
- Gatys et al, CVPR 2016 noisez  Stvle S
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Theoretical analysis on Style Transfer



Minimizing Maximum Mean Discrepancy (MMD)

Demystifyving Neural Styvle Transfer

Yanghao Li"  Naiyan Wang?

Jiaying Liu™*  Xiaodi Hou!

" Institute of Computer Science and Technology, Peking University
* TuSimple

lyttonhao @pku.edu.cn  winsty @gmail.com

Abstract

Mewral Style Transfer [Gatys er al, 20061 has re-
cently demonstrated very exciting msults which
catches eyes in both academin and industry. De-
spie the amaring resulis, the principle of newral
style transfer, especially why the Gram matrices
could represent style rmmains unclear. In this pa-
por, we propose a novel interpretation of newral
style transfer by treating it as 8 domain adapta-
tion problem. Specifically, we theoretically show
that matching the Gram matrices of feature maps
is equivalbent to minimize the Maximuom Mean Dis-
crepancy { MMD) with the s2cond order polynomial
kernel. Thus, we argue that the essence of neo-
ral style transfer is to match the feature distribu-
tions bepwoen the style images and the generated
images. To further support our standpoint, we ex-
periment with several other distribution alignment
methods, and achieve appealing resulis. We beliove
this novel interpretation connects these two impor-
tant research fizlds, and could enlighten future re-
searches,

1 Imtroduction

Transferring the style from one image to another image
i= an interesting yet difficult problem.  There have been
many ¢ fforts to develop e fficient methods for automatic style
transfer [Hertzmann er al, 2001; Efros and Freeman, 2001;
Efros and Leung, 1999; Shih e al, 2004; Ewaira e al,
2005]. Recently, Gatys er al. proposed a seminal work [Gatys
er al., 2016): It captures the style of artistic imapes and
itransfer it to other images using Comvolutional Meural Met-
works (CMM). This work formulated the problem as find-
ing an image that matching both the content and style statis-
tics based on the newural activations of each layer in CNM. It
achieved impressive results and several follow-up works im-
proved upon this innovative approaches [Johnson er al, 2006;
Ulyanov er al., 2016; Ruder er al., 2006; Ledig er al , 2016].
D spite the fact that this work has drawn lots of attention, the
fundamental element of style representation: the Gram ma-
trix in [Gatys er ai_, 2006] is not fully explained. The reason

* Corresponding aathor

linjiaying @pkuweducn  xiaodi.hou® gmail. com

why Gram maltrix can represent artistic style still remains a
iy stery.

In this paper, we propose a novel interpretation of new-
ral style transfer by casting it as a special domain adapta-
tion [Beijbom, 2012; Patel er al., 2015] problem. We theo-
retically prove that matching the Gram matrices of the neural
activations can be scen as minimizing a specific Maximum
Mean Discrepancy (MM} [Gretton er al., 20012al. This re-
weals that neural style transfer is intrinsically a process of dis-
tribution alignment of the newral activations bebween images.
Based on this illuminating analy sis, we also ex periment with
other distribution alignment methods, incleding MMID with
different kemels and a simplified moment matching method.
These methods achieve diverse but all reasonable style trans-
for results. Specifically, a transfer method by MMD with lin-
car kemel achieve s comparable visual results yet with a lower
complexity, Thus, the second order inferaction in Gram ma-
trix is not @ must for style transfer. Owr interpeetation pro-
vides a promizsing direction to design style transfer methods
with different visual resulis. To summarnze, our contributions
are shown as follows:

l. First, we demonstrate that matching Gram matrices in
neural style transier [Gatys er all, 2006] can be reformu-
lated as minimizing MM with the second order poly-
nomial kemel.

2. Second, we extend the original newral sty ke transfer with
different distribution alignment methods hased on our
novel interpretation.

2  Related Work

In this section, we briefly mview some closely related works
and the key concept MBD in our inte rpredation.

Stybke Transfer Siyle transfer is an active topic in both
academia and industry. Traditional methods mainly focws on
the non-parametric patch-based textune synthesis and transfer,
which msamples pixels or paiches from the original source
texfure images [Hertemann er al, 2000 ; Efros and Freeman,
2001; Efros and Leung, 1999; Liang er ail., 2001]. Different
methods were proposed to improve the quality of the patch-
based synthesis and constrain the structure of the target im-
age.  For example, the image guilting algorithm based on
dynamic programming was proposed o find optimal tex ture

-Lietal, 1JCAI 2017

TL;DR

F£= A = 2nd-order polynomial kernels&
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By using the second order degree polynomial Kkernel
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D] Eat Your VGGtables, or, Why Does Neural Style Transfer Work Best With Old VGG CNNSs' Features?
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This is an archived post. You won't be able to vote or comment.

[D] Eat Your VGGtables, or, Why Does Neural Style Transfer Work Best With Old VGG CNNs' Features? (scifmachinelearning)

submitted 1 & F 0| = by gwern

-

Previous: Twitter discussion.

An acquaintance a year or two ago was messing around with neural style transfer (Gatys et al 2016), experimenting
with some different approaches, like a tile-based GPU implementation for making large poster-size transfers, or
optimizing images to look different using a two-part loss: one to encourage being like the style of the style image, and
a negative one to penalize having content like the source image; this is unstable and can diverge, but when it works,

looks cool. (Example: "The Great Wave" + Golden Gate Bridge. I tried further Klimt-ising it but at that point too much
has been lost.)

VGG worked best for style transfer

One thing they noticed was that using features from a pretrained ImageNet VGG-16/19 CNN from 2014 (4 years ago),
like the original Gatys paper did, worked much better than anything else; indeed, almost any set of 4-5 layers in VGG
would provide great features for the style transfer optimization to target (as long as they were spread out and weren't
exclusively bottom or top layers), while using more modern resnets (resnet-50) or GooglLeNet Inception v1 didn't
work - it was hard to find sets of layers that would work at all and when they did, the quality of the style transfer was
not as good. Interestingly, this appeared to be true of VGG CNNs trained on the MIT Places scene recognition database
too, suggesting there's something architectural going on which is not database specific or peculiar to those two trained

models. And their attempt at an upscaling CNN modeled on Johnson et al 2016's VGG-16 for CIFAR-100 worked well
too.

Everyone uses VGG

=
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Published as a conference paper at ICLR 2019

IMAGENET-TRAINED CNNS ARE BIASED TOWARDS
TEXTURE; INCREASING SHAPE BIAS IMPROVES
ACCURACY AND ROBUSTNESS
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ABSTRACT

Convolutional Neural Networks (CNNs) are commonly thought to mcognise ob-
jects by leaming increasingly complex mepresentations of object shapes. Some
recent studies suggest a mone i.l.'npl:l'l'tﬂ.l'll role of image textures. We here put these
conflicting hypotheses to a quantitative test by evaluating CMN= and human ob-
servers on images with a texture-shape cue conflict. We show that ImageMNet-
trained CNNs are strongly biased towards recognising textures rather than shapes,
which 15 in stark contrast to human behavioural evidence and reveals fundamen-
tally different classification strategies. We then demonstrate that the same standard
archiecture (ResMNet-50) that leamns a texture-based representation on ImageNet
15 able to leam a shape-based representation instead when trained on Sty lized-
ImageNet’, a stylzed version of ImageNet. This provides a much better fit for
human behavioural performance in our well-controlled psychophy sical lab setting
(nine expenments totalling 48 560 psychophysical trials across 97 observers) and
comes with a number of unexpected emergent benefits such as improved object
detection performance and previously unseen robustness towards a wide range of
image distortions, highlighting advantages of a shape-based representation.

"
"

(@) Texbure image ihi Conient mmape () Tiew ture-shape cue comflict
Bl4% Indlan elaphant T1.1% tabby cat et  Indian elaphant
103 inpdri 1T3% gray raox M4% indri

EM: black swan 3%  Elamasa cat 96% black Swan

Figure 1: Classification of a standard ResNet-30 of () a texture image (elephant skin: only textume
cues); (b) a normal image of a cat (with both shape and texture cues), and (c) an image with a
tex ture-shape cue conflict, generated by sty le transfer between the first bwvo images.
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Fraction of 'shape’ decisions
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1. Artistic Style Transfer
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Feed-forward network 2019
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by = argmin Byez (L1 (8@0), x0)] . Lr(xixo) = Y [G'(x) — G'(xo)]
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Feed-forward network

- from Unyanov et al, ICML 2016
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Instance Normalization (IN)
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- from Unyanov et al, CVPR 2017
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Conditional Instance Normalization (CIN) 2019
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- from Dumoulin et al/, ICLR 2017
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Adaptive Instance Normalization (AdalN) 2019
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Adaptive Instance Normalization (AdalN) 2019
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- from Huang et a/, ECCV 2018
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Adaptive Instance Normalization (AdalN) 2019

Coarse styles copied

i - from Kerras et al, CVPR 2019
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Whitening and Coloring Transforms (WCT) 2019
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- from Yi et al, NIPS 2017
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Whitening and Coloring Transforms (WCT) 2019
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(a) Reconstruction (b) Single-level stylization

Where’ ffH — EAEH - from Yi et al, NIPS 2017



Whitening and Coloring Transforms (WCT)
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How?
* ZCA: Zero-phase Component Analysis

Whitening & Coloring
Ir anﬂfurm (WCT)

\ :/

DecoderXx

.

(a) Reconstruction (b) Single-level stylization

Recons
Decoderx

Dutput

E"f

where, ff" = EAE"
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- from Yi et al, NIPS 2017



Whitening and Coloring Transforms (WCT)
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* ZCA: Zero-phase Component Analysis
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- from Yi et al, NIPS 2017



Whitening and Coloring Transforms (WCT)
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* ZCA: Zero-phase Component Analysis
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- from Yi et al, NIPS 2017



Whitening and Coloring Transforms (WCT) 2016
Whitening

fC:Ec:Dc_% E;rfc

f c centered content feature

D, diagonal matrix with the eigenvalues of the covariance matrix

Ec: orthogonal matrix of eigenvectors

Coloring
N 1 "
fCS — E.s Dg E;— fc
f S centered style feature

D s diagonal matrix with the eigenvalues of the covariance matrix

E g orthogonal matrix of eigenvectors
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Whitening and Coloring Transforms (WCT) 2019
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2. Photorealistic Style Transfer
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Deep Photo Style Transfer 2019

- from Levin et al. TPAMI 2008

(d) Our result

(a) Reference style image (b) Input 1mage (c) Neural Style (distortions)
L L given an input image / with N pixels, Mris N x N
Liotal = E Dﬂfﬁg + I E BE'JCE + AL k
C 5 Tt ~ T ,
N L= VO] MV, [O]
c=1
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Deep Photo Style Transfer 2019
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(a) Input image (d) Our result Emt.a] E ﬂf£ -+ I E ﬁg f, o —+ A E*m
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l.e i]

Fo.o[0] = F [O]Mfﬁ[f] Fo.o[S] = F4[S]My..[S]

(e) Reference style image (h) Crrspondence of
(d) and (e)
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“Decoderd| |48t max pooling HE 2| X2t Y24F=X} (Unpooling) ”

WCT (artistic model) PhotoWCT (photorealistic model)
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PhotoWCT -
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(d) PhotoWCT Content WCT PhotoWCT



PhotoWCT 2019

“At24 smoothingO|2t=

Image Size (WCT + post)
128 x 128 2.7+ 2.5

256 X 256 3.2+ 9.2
512 x 512 3.0 + 40.2
768 X 768 3.8+ 101.8

1024 x 1024

= 3 3

1'-2 |
= et
) L' 3

(c) WCT [10] (d) PhotoWCT Content PhotoWCT PhotoWCT
+ smoothing



PhotoWCT 2019

—

M2 L GA2 FH2] G101 O|E RACFH2)| Y5 RCt LIS Ao

PhotoWCT [| [
Image Size (WCT + post)

]

128 x 128 2.7+ 2.5
256 X 256 3.2+ 9.2
Hh12 x 512 3.6 +40.2
768 X 768 3.8+ 101.8

1024 x 1024

3.9 + OOM

(c) WCT [10] (d) PhotoWCT Content PhotoWCT Ours
+ smoothing
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WCT via Wavelet Corrected Transforms (WCT2) 2019
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* Lena image decomposition using Haar wavelet transform
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WCT via Wavelet Corrected Transforms (WCT2) 2019
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DEVIEW

WCT via Wavelet Corrected Transforms (WCT2) 2019

PPl — Z T,:;TT _7
k=1
Sa=E ===
() Input (b) PhotoWCT [19] () Ours o) O & Loty
XISHCH

Low frequency2t AEILES 15|M AN 2 O=H| SElol
(interpretable !)



DEVIEW

WCT via Wavelet Corrected Transforms (WCT2) 2019

n

2. "Multi-level CH4! Progressive stylization @ 2 of 19| feed-forwardTt 34

WCT | | Max-pooling / Upsampling - Unpooling = Wavelet pooling 2 Wavelet unpooling
Multi-level stylization Progressive stylization

High frequency component skips

A

— ljevel 1 — ljevel 1 + smoothing + filtering — Ifinal

WCT WCT

(a) WCT (artistic) (b) PhotoWCT (c) Ours (WCT?)
otLte| AT AESHY| WE0
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WCT via Wavelet Corrected Transforms (WCT2) 2019

Cherry pick S

(a) Input (b) DP5T | 7] (c) PhotoWCT [ 1V] (d) PhotoWCT (full) [ 1Y] (e) Ours (WCT?)



DEVIEW

WCT via Wavelet Corrected Transforms (WCT2) 2019

Cherry pick &

(a) Input (b) DPST [ ] (¢) PhotoWCT [ V] (d) PhotoWCT (full) [ 1V] (e) Ours (WCT?)
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WCT via Wavelet Corrected Transforms (WCT2) 2019

Photorealistic video stylization results (day-to-sunset).
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Code, generated Images,

THANK YOU ©

jaejun.yoo@navercorp.com

and pre-trained models
are all available at
github.com/clovaal/\WCT?2
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WCT via Wavelet Corrected Transforms (WCT2)

* User study results * SSIM index vs. Style loss

DPSP  PhotoWCT (full) Ours IDEAL CASE
Fewest artifacts | 21.34% 9.33% 69.33 % G
Best stylization | 30.49% 12.74% 56.77 % o PeeWEl T wer?
Most preferred | 24.63% 11.16% 62.21% et e
™ bpsT weL
* Computational cost (seconds) ) wer? ©
PhotoWCT [17] <, e
Image Size  DPST['’] (WCT + post) [ Ours £ |
128 x 128 135.2 2.7+ 2.5 2.5
256 x 256 306.9 3.2+ 9.2 3.2 “
512 x 512 1020.7 3.6 + 40.2 3.8 \ FhotoWCT (full
768 X T68 2264.0 3.8+ 101.8 4.2 CWCT (full)
1024 x 1024 3887.8 3.9 + OOM 4.7 0.70 072 074 076 078 080 082 0.84
SSIM

Content O|0|X|2t AE} FHZHEl O

Style O[] X|2t AE}

Q| Hi3}E| 0|0|X

= L L

O] X| 29| structure similarityS He SSIME 40| 2 £,

10| AEFY ™ME9| XJ0|& HE= Gram loss& 2t= =5 £L
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Summary

Wavelet pooing2} progressive AEIY EHHANE AF2SHTH A,

WCT

___________

_________________

(a) WCT (artistic)

1.
2.
3.
4,

NN
= Wavelet pooling

AL AL
“ Wavelet unpooling

Max-pooling / Upsampling - Unpooling

Multi-level stylization Progressive stylization

""""""""""""""""""""""""""""""" High frequency component skips
- = Max pooling mask = = =
=1 M —_ [ I — T p—
B .H H_> ‘I H. N - C _-P
“““““ S —»
-------------------- — Lo -4 o wer . HH— )
—————————————!l—e——l—S—- .‘“:nd_:._,-—————————————----------------!l-ey-elil-u | : u WCT WCT WCT |
_______________________ - I—-_FT____________________________________-.
— ljevel 1 — ljevel 1 + smoothing + filtering — Ifinal
(b) PhotoWCT (c) Ours (WCT?)

Better AEIY B2l (less error propagation)

Faster model (?|£ CH{H| 8408} 7}=5, no post-processing)
Lighter model (?|& CHH| 51% memoryTt AlE)

Stronger model (1k 115l& e O|0]X| ~ 4 sec)
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